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We present a simple solution to the one-dimensional Fresnel-Kirchoff diffraction integral with minimal approximations that 
are appropriate for the geometrical optics regime, where phase contrast enhancements can be considered to be caused by 
refraction by a semi-transparent object.  We demonstrate its accuracy by comparison to brute-force numerical raytrace and 
diffraction calculations of a representative simulated object, and show excellent agreement for spatial scales corresponding to 
Fresnel numbers greater than unity.  The result represents a significant improvement over approximate formulas typically 
used in analysis of refraction-enhanced radiographs, particularly for radiography of transient phenomena in objects that 
strongly refract and show significant absorption. 
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Backlit projection x-ray radiography of absorbing 
objects has a long history dating back to Röntgen.  In the 
limit of high x-ray energy, transmission of backlight x-
rays along a line of sight is e-τ, where τ is the line-
integrated opacity of the object that depends on the object 
material properties and the backlight x-ray energy.  
Treating τ as one-dimensional is a natural simplification 
for imaging spherically-symmetric objects, in which case 
τ(x) is the Abel transform of a radial attenuation 
coefficient.  This class of objects is important for 
radiography of inertial-confinement fusion (ICF) plasmas 
[1-3]. 

This approach fails when wave effects becomes 
significant.  From a diffraction perspective, a light wave 
from a backlight source experiences a local phase shift φ(x) 
relative to vacuum in passing through a semi-transparent 
object, and over sufficient propagation distances the phase 
perturbations generate light intensity perturbations in a 
detector plane.  From a geometrical optics perspective, 
straight rays from the backlight source are refracted by 
transverse density gradients in the object, and this adds 
or subtracts light intensity locally in a detector plane.  The 
two perspectives are equivalent for object spatial scales L, 
propagation distances q, and light wavelengths λ that 
correspond to Fresnel numbers F = L2/qλ >> 1.  This 
refraction-enhanced imaging regime is of interest in fields 
such as biological and medical imaging and astronomy [4-
9], and is of greatest interest for ICF research [10]. 

The transport of intensity equation (TIE) [11-13] is 
typically used to interpret the transmitted intensity 
pattern I(x,z) along the z-axis line of sight, 
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Direct application of eq. (1) is limited to small offsets 
and/or multiple detector planes.  When absorption is 
negligible and phase shifts are small, the intensity I(x,q) = 
1 − (𝜆𝑞/2𝜋)d!ϕ(x, 0)/dx! [4,14,15], and modifications to 

allow for absorption can also be included [16-18].  
Retrieval of φ(x) can then proceed using a variety of 
approaches.  An alternative approach is to map deflections 
by scanning across the object [5,14], and this provides a 
direct measure of dφ/dx when the approach is practical. 

Transient phenomena in strongly refracting and 
absorbing objects present a particular problem, because 
scanning or detector-plane shifting techniques cannot be 
used, and φ(x) and τ(x) must generally be found iteratively 
using model functions in a forward fit.  Approximate 
formulas used for calculating I(x) fail because the required 
approximations do not hold, and in this case numerical 
forward calculations of I(x) using either eq. (1) , numerical 
raytracing, or direct solution of the Fresnel-Kirchoff (FK) 
integral [19,20] must be used.  This process is time-
consuming, particularly when model functions are 
developed without assumed analytic forms in genetic 
algorithm search and reconstruction procedures [21]. We 
therefore pursue the derivation of a simple formula for the 
radiograph intensity distribution due to a strongly 
refracting and absorbing object in an arbitrary detector 
plane that is appropriate for the refraction-enhanced 
imaging regime. 

We begin with the one-dimensional complex form of the 
FK diffraction integral for an infinitely-distant source 
backlighting an absorbing phase object in vacuum, with 
phase and opacity variations along the x-axis immediately 
in front of the object, and look for solutions to the free-
space propagation problem that leads to an absorption 
radiograph with refractive enhancements.  The field at 
location x in a detector plane a distance q behind the 
object can be written as, 
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where C is a normalization constant and xo is the 
coordinate in the object plane. We assume (x - xo)2 << q2 



and λ << q, eliminating the slowly-varying bracketed 
obliquity factor and simplifying the phase exponential.  
When φ(xo) = constant and τ(xo) = 0, we can solve the 
integral analytically [22] and determine C such that the 
intensity I(x) = 𝐸(𝑥)𝐸∗(𝑥)  is unity.  Neglecting phase 
factors that will cancel in I(x) throughout, we have, 
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We now work with eq. (3) directly in coordinate space, 
rather than with transforms in Fourier space.  We change 
variables with u = (x - xo)/a, yielding 
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with a = 𝜆𝑞/𝜋.  We first expand φ about x, setting 
derivatives higher than φ2 = d2φ/dx2 equal to zero, 
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Eq. (5) can be rewritten as, 
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We recognize that eq. (6) implies that object points near xo 
= x contribute most to the field (u near zero) at a detector 
location x' that is different from x, and that the intensity 
pattern will therefore be shifted locally by an amount that 
eliminates the second term in the exponential. We find 
the shift by writing E(x'), with x' = x + a2φ1(x)/2.  Again 
neglecting third- and higher-order derivatives of φ(x), this 
is, 
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where b2 = a2/(1 + a2φ2(x)/2). We next expand τ(x) about x 
and set derivatives higher than τ2 = d2τ/dx2 equal to zero, 
giving, 
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The integral can be solved analytically [22], and the 
resulting intensity is, 

I(x ') = I(x +
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where τ and all derivatives are evaluated at x.  Eq. (9) is 
an exact solution for the intensity pattern derived from 
fields given by the FK integral of eq. (3), assuming only 
that terms involving third- and higher-order derivatives 
in the expansions of φ(x+δ) and τ(x+δ) about x are all zero.  
From eq. (4), it is therefore well-suited to the geometrical 
optics regime of Fresnel numbers much larger than unity. 

The term K(x) is second-order in λq and involves 
squares of first and second derivatives of the opacity 
profile, and in most cases of practical interest can be 
neglected.  Eq. (9) then reduces to a particularly simple 
form, 
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Eq. (10) differs in three important respects from 
approximate equations used to describe intensity patterns 
in refraction-enhanced imaging [13-20]; the intensity 
pattern is shifted on the left-hand side by an amount 
proportional to dφ/dx, the right-hand side involves 
1/ 1 + (𝜆𝑞/2𝜋)𝑑!ϕ/𝑑𝑥!  rather than 1 − (𝜆𝑞/2𝜋)𝑑!ϕ/
𝑑𝑥!, and absorption is included by simply multiplying the 
right-hand side by an exponential absorption factor.  
Where the second derivative term in the denominator of 
the right-hand side is less than negative one, a cusp is 
formed and the intensity profile forms caustics.  In these 
regions the intensities of the folds simply add, though 
here the neglect of third- and higher-order derivatives of 
φ(x) and τ(x) in this treatment may become questionable.  

Approximate solutions for I(x), rather than I(x'), can be 
attempted, and the first approximation for infinitesimal q 
recovers the TIE eq. (1), but eq. (10) is perhaps most 
useful as-written for forward-fit iterative solutions to the 
inversion problem of determining φ(x) and τ(x) from 
intensity radiograph data.  Given trial functions φ(x) and 
τ(x), the intensity pattern can be easily calculated with 
minimal restrictions on their higher-order derivatives, 
allowing rapid iteration to optimal φ(x) and τ(x) functions 
by generating regridded radiographs I(x') that best match 
experimental data.  The equation is equally appropriate 
for point-source projection radiography when x is the 
detector location scaled back to the object through the 
magnification and when q is replaced by f = pq/(p+q), 
where p is the source/object distance [10,15,16]. 

We can demonstrate the accuracy of eq. (10) using 
simulations appropriate to radiography of an ICF 
implosion [10].  Fig. 1(a) shows typical expected radial 
electron density and absorption coefficient (at E = 10 keV) 
profiles along with their corresponding line-integrated φ(x) 
and τ(x) profiles that are the Abel transforms of the radial 
profiles.  We see that this object is strongly refracting and 
absorbing when viewed along the limb, with ~ 300 
radians of phase shift, peak optical depths > 1, and spatial 
scales down to ~ 1 µm.  Fig. 1(b) shows a comparison of 
expected radiograph profiles from a 10 keV collimated x-
ray source backlighting the implosion onto a detector q = 
10 mm from the object (equivalent to point-source 
backlighting at high magnification, with p = 10 mm), 
calculated in various ways; numerical raytracing [10,23], 
direct application of the FK integral eq. (2), eq. (10), and  



 

 
Fig 1:  (a) Radial electron density Ne(r)/2.6x1024 cm-3, 
radial absorption coefficient α(r)/3.9x10-3 µm-1, phase shift 
-φ(x)/285 radians, and opacity τ(x)/1.12, and (b) simulated 
radiographs described in the text. 
 
eq. (33) of [18] that derives from [17] for infinite source 
distance.  We see that eq. (10) duplicates a numerical 
raytrace even in the sharply-varying caustic region near x 
= 470 µm, and duplicates direct application of the FK 
integral except where φ(x) significantly varies over µm 
spatial scales corresponding to Fresnel numbers < 1, 
where the higher-order derivatives neglected in the 
derivation of eq. (10) are significant.  It also significantly 
improves upon previous approximate formulas, which 
misplace the peaks and dips and calculate negative 
intensities near x = 470 µm. 

In summary, we have derived and demonstrated a 
simple analytical formula to predict the radiograph profile 
of an arbitrary absorbing and phase-shifting object, that is 
an exact solution to the Fresnel-Kirchoff integral with 
well-specified approximations appropriate to the 
refraction-enhanced imaging regime. This represents a 
significant improvement over earlier approximate 
formulas for radiography of transient phenomena in 
objects that are strongly refracting and absorbing, and is 
well-suited to iterative search and reconstruction 
procedures that optimize the phase and opacity profiles to 
best-fit individual measured radiographs.  This work was 
performed under the auspices of the U.S. Department of 
Energy by Lawrence Livermore National Laboratory 
under contract DE-AC52-07NA27344. 
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